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We compute electron energy levels for some selected irreducible representations of two
crystals, Cu and LaSn;, using both the standard orthogonalized plane-wave method (OPW)

and a modified form of this method (MOPW).

It is shown that (for a nonrelativistic non-

self-consistent treatment, at least) the convergence, in the sense of the number of sym-
metrized plane waves required, is both more rapid and more reliable for MOPW than for
OPW. TFor the two crystals chosen, standard OPW was found to be reasonably good for
LaSnjy but inadequate for Cu, whereas MOPW was quite adequate for both.

I. INTRODUCTION

The standard orthogonalized plane-wave (OPW)
method developed by Herring® has enjoyed a large
measure of success in electronic band-structure
calculations. It is fairly well known, however,
that in standard form OPW does not work well for
certain crystals, 2 particularly the transition ele-
ments where the 3d shell is being filled or Cu
with a just-filled 3d shell. In such elements the
3d atomic function is generally not a reasonably
accurate eigenfunction for the crystal. Thus,
orthogonalizing to this function or to an atomic-
like function constructed from it generally leads
to poor results. If, on the other hand, the 3d
atomic function is ignored completely, a large
number of symmetrized plane waves will be re-
quired for convergence.

Brown and Krumhansl® developed a method which
avoids such difficulties by treating alltheatomic-
like functions as expansion functions on the same
footing as the plane waves. In this modified plane-
wave (MPW) method, the plane waves are not
orthogonalized to any of the atomiclike functions.
The MPW method has been used by Brown and
Krumbhansl® for Li and by Butler et al.* for Cu to
give a few examples. The last-named paper is of
particular importance in establishing the MPW
method as the results are in extremely good agree-
ment with the calculations on Cu by Burdick, °who
used the augmented plane-wave (APW) method.
Both Burdick and Butler ef al. used the Chodorow?
potential.

II. MOPW METHOD

We now describe a method which combines
features of the MPW and OPW methods. We refer
to this as a modified orthogonalized plane-wave
(MOPW) method. In this method, the symmetrized
plane waves are orthogonalized only to those
lower-lying atomic functions (in the form of sym-
metrized Bloch sums) which one “trusts” asbeing

2

quite good crystal eigenfunctions as well. The
plane waves are not orthogonalized to the higher
atomiclike functions. These higher atomiclike
functions are kept in the expansion explicitly as
symmetrized Bloch sums on the same footing as
the (symmetrized) orthogonalized plane waves.
Our procedure is essentially the same as that of
Deegan and Twose, " differing mainly in the manner
of obtaining the atomiclike functions. A some-
what similar approach was used by Callaway® in

a calculation for iron. This idea of supplementing
the orthogonalized plane waves with functions
picked to represent the appropriate atomic func-
tion symmetries is not a new one, having already
been suggested by Herring! in his original OPW
paper. Brown® has shown that MOPW is mathe-
matically identical to MPW if the atomic functions
to which one orthogonalizes are exact eigenfunc-
tions for the crystal. An outline of our version of
MOPVW is given in the Appendix.

III. COMPARISON OF MOPW AND OPW

We felt it would be appropriate to compare
MOPW and standard OPW for an actual case. We
confine ourselves here to three irreducible rep-
resentations of Cu and two of LaSn,. !° For this
comparison we take the MPW results as being
“correct, ” since, of the three methods (MPW,
MOPW, and OPW), MPW has the highest degree
of variational flexibility.

For both Cu and LaSn; 2 muffin-tin model was
used. The same Chodorow® potential used by
Burdick® and by Butler ef al.* was used for Cu
while the LaSn, crystal potential was constructed
from the atomic potentials for La and Sn of Her-
man and Skillman. !! These La and Sn potentials
were modified slightly near the muffin-tin radii
50 as to join smoothly along a line connecting the
La and Sn nuclei. The atomiclike functions were
determined by solving the Schrddinger equation
for the appropriate atoms using the above poten-
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tials. These solutions contain the added restric-
tion that the functions go to zero with zero slope
by the radius of the appropriate muffin-tin sphere.
For the higher-lying atomic levels, these trun-
cated functions have somewhat higher energies
than the corresponding free-atom functions.

A. Selected Irreducible Representations for Cu

X/ :k=(100). *!® This representation allows p
symmetry only. The Cu atomiclike 2p and 3p
levels are at approximately — 65.9 and - 5.4 Ry,
respectively. The Cu Fermi level is at - 0. 38 Ry.5

Table I lists electron energy levels for four
choices of calculation. In Tables I-V, column 1
gives the number of symmetrized plane waves
used in a particular truncation, column 2 lists
the square of the magnitude!® of the largest plane
wave in that particular truncation of the matrix
equation, and column 3 gives the MPW energy
level. All energies are in Ry. Retention of the
fourth decimal place in the energies listed is
merely to show comparison. In Tables I-V, only
the energy levels of interest are shown. In Table
I, MOPW orthogonalizes to 2p and “keeps” 3p as
an explicit expansion function; i.e., we do not
orthogonalize to the 3p atomiclike function. OPW1
orthogonalizes to 2p and 3p. OPW2 orthogonalizes
to 2p and ignores 3p.

As expected, MOPW is virtually identical to
MPW. This, plus the fact that the orthogonalized
plane waves do contribute importantly to thislevel,
indicates merely that the Cu 2p atomic function is
an accurate eigenfunction for the crystal. Orthog-
onalizing to 3p (OPW1) produces a level which is
consistently low by about 0. 01 Ry. At —-5.4Ry, the

TABLE I. X, energy levels for Cu. See text for a
description of the various methods of calculation. All
energies are in Ry. For reference, Burdick’s APW
level is at — 0,235 Ry (Ref. 5).

Sym-

met-

rized Mag-
plane nitude
waves squared MPW?

MOPW OPW1 OPW2

1 1 -0.,2151 -0.2151 -0.2250

6 13 —0.2335 ~0.2336 —0.2428
12 22 —0,2345 —-0,2346 —0.2436 0.2053
18 30 —0.2346 -0,2346
24 38 ~0,2347 —-0,2346 —-0.2435 -0.0752
38 54 -0.2439 -0.1702

2The MPW level at 24 plane waves is from Butler
et al. (Ref, 4). The other MPW levels (and the fourth
significant figure of the 24 plane-wave level) are from
Butler (private communication), We recalculated the 1
and 12 plane-wave levels as a check: They agree to
four significant figures with those of Butler.

Table II. T’y energy levels for Cu. All energies are
in Ry. For reference, Burdick’s APW level is at
—0.640 Ry (Ref. 5).

Sym -
met-
rized Mag-
plane nitude

waves squared MPW?2 and MOPW OPW1 OPW2
1 3 —0.6220
6 19 —0.6339
12 27 —0.6411 1.575  0.644
24 44 —0.6453 1.574  0.493
38 59 —0,6465 1.572 0.370

3The MPW level at 24 plane waves is from Butler et al.
(Ref. 4). The other MPW levels (and the fourth signifi-
cant figure of the 24 plane-wave level) are from Butler
(private communication).

atomiclike 3p function is probably a quite good
eigenfunction for the crystal. Ignoring the 3p func-
tion (OPW2) produces levels which converge quite
slowly.

T',s.: K=(000). This representation allows d
symmetry only. The Cu atomiclike 3d level is at
about — 0. 5Ry. Here MOPW and MPW are identi-
cal procedures since the only atomic function in-
volved is the 3d, and MOPW would keep this as
an expansion function.

Table II lists energy levels for three choices of
calculation. OPW1 orthogonalizes to 3d. OPW2
ignores 3d. In Tables II-V, the column labeled
OPW1 is included mainly for completeness. Since
one of the atomiclike functions to which we orthog-
onalize in OPW1 in Tables II-V is a major contrib-
utor to the desired level, one would not expect
good results with this choice of computation.

From Table II it is clear that standard OPW
(either orthogonalizing to 3d or ignoring 3d) does
not give good results for I'ys,. Similar results
(not shown) were obtained for X; which also allows
only d symmetry.

Z,:k=(% 4, 0). This representation allows p and
d symmetry. Table III lists energy levels for five
choices of calculation. MOPW orthogonalizes to
2p and keeps 3p and 3d. OPW1 orthogonalizes to
2p, 3p, and 3d. OPW2 orthogonalizes to 2p and 3p
and ignores 3d. OPW3 orthogonalizes to 2p and
ignores 3p and 3d.

From Table III we see that orthogonalizing to
the 3d function is unsuitable (OPW1) and that ig-
noring the 3d (OPW2 or OPW3) produces extreme-
ly slow convergence. The 3d function contributes
very strongly to the level of interest in Z,, so
that OPW does not give good results here as it did
for X,. where only p symmetry was involved. MOPW
gives results which are identical (to four figures)
to MPW.
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TABLE Il. ), (1, %, 0) energy levels for Cu. All energies are in Ry. For reference, Burdick’s APW level is at
—0.600 Ry (Ref. 5).

Magnitude

Symmetrized
plane waves squared MPW MOPW OPW1 OPW2 OPW3
1 3.125 —0.49362 —0.4936
6 9.125 -0.5769 —-0.5769 1.188
12 13.125 —0.5863 -0.5863 1.599 1.029 1,030
18 18.125 -0.5879 -0.5879
26 21,125 —0.5888 1.592 0,921 0.924
36 27,125 1.591 0.848 0.850

2This level is from Butler (private communication).

B. Selected Irreducible Representations of LaSn;

LaSn; has the ordered CujzAu crystal structure

The (nonrelativistic) Fermi level is at about — 0.5
Ry. 15

Fzs':ﬁz (000). This representation allows Lad
and Snd symmetry (Snd on two of the three Sn sites
making up the primitive cell). The La5d is a
valence electron at about — 0. 45Ry in the free La
atom, ! whereas Sn 4d lies roughly at — 2. 5Ry in
the free Sn atom.!' La 3d and 4d are at about
- 63.7 and - 8.75 Ry, respectively.!! Sn 3d is
at about — 37.2 Ry. !

Table IV lists energy levels for five choices of
calculation. MOPW orthogonalizes to La 34 and
4d and to Sn 3d and keeps La 5d and Sn 4d. OPW1
orthogonalizes to La 3d, 4d, and 5d and to Sn 3d
and 4d. OPW2 orthogonalizes to La 34 and 4d and
to Sn 3d and 4d and ignores La 5d. OPW3 orthog-
onalizes to La 3d and 4d and to Sn 3d and ignores
La 5d and Sn 4d.

From Table IV we see that MOPW and MPW are
virtually identical. This, plus the fact that the
orthogonalized plane waves do contribute impor-
tantly to this level, indicates that La 3d and 4d
and Sn 34 are accurate eigenfunctions for the
crystal. Orthogonalizing to La 54 is not a good
procedure (OPW1). Ignoring La 5d and treating
Sn 4d as a lower atomic function, i.e., orthog-
onalizing to it (OPW2) agrees with MPW within
about 0. 02Ry at 25 symmetrized plane waves.
Ignoring both La 5d and Sn 4d (OPW3) produces
very slow convergence. A comparison of Tables
II and IV (OPW2 of each Table) indicates that

TABLE IV. Ty5. energy levels for LaSns.

ignoring the valence La 5d function in LaSng
produces much better results than ignoring the
3d function in Cu. This is very likely due to the
presence of the lower-lying La and Sn d-type
atomic functions in the LaSn; case.

Tps: k=(000). This representation allows Lap
symmetry and Sn p symmetry on two Sn sites. Sn
5p is a valence function at about — 0.44 Ry in the
free atom. !! La 5p lies roughly at — 1. 94 Ry in the
free atom.!! La 2p, 3p, and 4p are at about — 403.0,
-82.2, and — 15. 3Ry, respectively.! Sn 2p, 3p,
and 4p are at about —288.8, —52.1, and - 7. 06
Ry, respectively.!!

Table V lists energy levels for five choices of
calculation. Note that there are two levels for
each truncation. MOPW orthogonalizes to La 2p,
3p, and 4p and to Sn 2p, 3p, and 4p and keeps La
5p and Sn 5p. OPW1 orthogonalizes to La 2p, 3p,
4p, and 5p and to Sn 2p, 3p, 4p, and 55. OPW2
orthogonalizes to La 2p, 3p, 4p, and 5p and to
Sn 2p, 3p, and 4p and ignores Sn 5p. OPW3orthog-
onalizes to La 2p, 3p, and 4p and to Sn 2p, 3p,
and 4p and ignores La 5p and Sn 5p.

As expected, MOPW gives levels practically
identical to MPW. Including the two Sn 5p func-
tions with the functions to which one orthogonalizes
is not a good procedure (OPW1). Ignoring the two
Sn 5p functions and orthogonalizing to the (margin-
ally accurate) La 5p function (OPW2) gives results
in fairly good agreement with MPW. Ignoring
both the La 5p and the two Sn 5p functions (OPW3)
converges quite rapidly and is in excellent agree-
ment with MPW at 27 symmetrized plane waves.

Comparison of OPW3 of Table V with OPW3 of

All energies are in Ry.

Symmetrized Magnitude

plane waves squared MPW MOPW OPW1 OPW2 OPW3
3 5 —0,4444 -0, 4444 —0.1692

13 13 —0,.4510 —0.4509 0.0474 -0,3701 0.3770

25 20 —0.4576 —0.4575 0. 0439 ~0.4416 —0.0289

40 27 —0,4725 —0,4724 —0.4675 —0.2280
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TABLE V. Ty energy levels for LaSn;. All energies are in Ry.
Symmetrized Magnitude

plane waves squared MPW MOPW OPW1 OPW2 OPW3
6 5 —0,0955 —0.0957 0,585 ~0.0779 -0.0142
-0.6310 -0.6314 0,215 —0.6046 -0,5571
16 11 —0,1069 -0,1071 0,530 -0.1223 -0.0902
-0,6397 -0,6401 0.190 ~0.6561 -0.6309
27 17 —0.1123 —0.1126 0.499 -0,1275 —-0,1097
—0,6425 -0.6428 0,179 ~0.6588 -0.6407
39 22 -0,1144 -0.1290 -0,1135
-0.6439 ~0.6596 —0.6437

Table IV illustrates the fact that it generally takes
far fewer plane waves to represent a p-type level
than it does to represent a d-type level.

For LaSns; one might guess a priovi that better
results are obtained by orthogonalizing to the Sn
44 function than by ignoring it (OPW2 versus OPW3
of Table IV) whereas one does better by ignoring
La 5p than by orthogonalizing to it (OPW3 versus
OPW2 of Table V). One would guess this both
from the generally more rapid convergence of p
levels as opposed to d levels and from the follow-
ing consideration: When the Herman- Skillman®!
free-atom functions are truncated by re-solving
the Schrodinger equation with the muffin-tin re-
strictions as described earlier, somewhat higher
energies result. Table VI shows that this trunca-
tion affected the Sn 4d atomic function much less
than the La 5p atomic function, indicating that
the truncated Sn 4d function is probably a better
crystal eigenfunction than the truncated La 5p
function.

IV. CONCLUSIONS

When standard OPW is applied to LaSng, electron
energy levels in quite good agreement with MPW
can be obtained by judiciously choosing whether
to orthogonalize to a particular atomiclike func-
tion or to ignore it (see Tables IV and V). The
MOPW method gives more rapid convergence to
the MPW levels than OPW does, and whenever an
atomic function is of doubtful accuracy as a
crystal eigenfunction one simply keeps that func-
tion or an atomiclike function constructed from

Table VI. Change in La 5p and Sn 4d atomic energy
levels due to the muffin-tin truncation. All energies are
in Ry.

Free-atom Truncated Difference:
Function energy? energy  Column 3 — Column 2
La 5p -1.937 -1.824 0,113
Sn 4d —2.526 -2.506 0,020

2From Ref. 11.

it as an explicit expansion function ( in the form
of a symmetrized Bloch sum).

For Cu, standard OPW works quite well for a
representation involving only p symmetry (see
Table I). This would presumably also be the case
for representations involving only s or only s and
p symmetry. For representations involving d
symmetry, however, we find MOPW to be far more
suitable than OPW (see Tables II and III).

It should be appreciated that for Cu, with only
a few atomic functions, there is no great advan-
tage in using MOPW instead of MPW, but that for
crystals with many atomic functions, such as
LaSn;, there can be considerable reduction in
matrix size in going from MPW to MOPW, partic-
ularly at points of lower symmetry.

It could be argued that in going from OPW to
MOPW, two additional types of integrals are in-
troduced into the matrix formulation, namely,
atomic-atomic and atomic plane-wave integrals.
However, once programmed, this is of minor
importance and it seems to us that these types of
integrals are needed in forming the orthogonalized
plane waves anyway.

We had originally hoped to give some general
criteria which would enable one to tell a priori
whether to orthogonalize to a given atomiclike
function or to ignore it. The discussion associated
with Table VI describes a possible criterion for
atomiclike functions constructed as ours were.

In a given calculation it is probably best to try
the marginal functions both ways for one or two
representations, although this can result in a
considerable amount of computation. With the
MOPW method this decision is not so crucial,
since one can always “keep” the doubtful atomic-
like functions at the expense of increasing the
matrix size somewhat.

In summary, we feel that the basic OPW method,
in the form of MOPW (or MPW when few atomic
functions are involved) rather than in standard
form, is actually a quite suitable method for
crystals such as Cu. Standard OPW appears to
be quite inadequate for Cu for those representa-
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tions allowing d symmetry. For LaSn,, although
standard OPW would probably be suitable (partic-
ularly for a self-consistent treatment), MOPW
converges more rapidly and more reliably.
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APPENDIX

In our version of MOPW, we approximate the
true crystal wave function zp;‘ (F) by

WE) =20 ;@) (A1)

where the ¢; are of two types: (i) higher atomic-
like functions or cutoff functions (CO) and (ii)
orthogonalized plane waves (OPW’s). The varia-
tional procedure leads to the set of equations

Zicn JOTENH-E,) ¢,(F)dr=0 , (a2)

where H is the Hamiltonian of the system and E,

is the energy eigenvalue. These equations are to
be solved for each reciprocal space k value used.
This set is equivalent to the matrix equation

HE -ESE, (A3)
where

Hi=[¢¥@) H¢,F)dr (A4)

Si=/ ¢;-*(r)¢,-(r)dv : (A5)

Since the ¢; are not necessarily orthogonal, § is
not the identity matrix.
Schematically, the matrices are of the form

_((co{cho) (CO|H|OPW) )
(OPW|H|CO) (OPW [H|OPW)
16

(A8)

Define an orthogonalized plane wave as
¢(k.i):PW(§i)"Zbaibcb(F) , (A7)

with PW(ﬁ ) being the ordinary plane-wave term
and the C ( ) bemg the lower atomiclike functions.
We write K for k +K If the C, satisfy

<Cblct> =0y

| Do
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then
a1,=(C,| PW(K,)) (A8)
The OPW-OPW elements are
(&) |H|$(&,)=(PWE, |H|PWE,)) -4 -B+D ,
(A9)
where

A=2,a%,(C,|H|PW(K,) ,

B=Y,a; (PW(EK)[H|C}) ,

D=Z,,,,a’i",,ajt C,|H|C,)
If each C, satisfies

HC,(T)=E,C,(¥) (A10)
then Eq. (A9) reduces to

(@K, H|$E,) = (PW(EK,) |H|PW(K,))

-2ahayE, . (A11)

In our application, some of our “lower” atomiclike
functions do not satisfy (A10) exactly (because of
fitting a cubic function onto them so that they go to
zero with zero slope). We therefore used Eq. (A9)
and not Eq. (A11). Calculation of the actual values
indicated that taking (C,|H|C,) equal to zero for
b#1 was still a good approximation. We further
have

K2+V)(Vol)6,;;+4m
x[[v(r) -

(PW(K,) |H|PW(K;)) = (

V1joGAredr
(A12)

where V is the constant value of the potential be-
tween the muffin-tin spheres Vol is the volume of
the primitive cell G is the reciprocal-lattice vec-
tor connecting K and K and j, is the spherical
Bessel function of order zero. We have

GE) oK)= PWEK,)|PWK,) -2, a%a,, ,

(A13)

(PW(K,) [PW(K) = (Vol)b;; (a14)
a;;=(C;|PW(K,) , see Eq. (A8)

=4rX,K) [u,0r)i, o, & 7)var | (A15)

where ,(r) =iy 10 () and X,(K;) =X, ()00 (K;) is a
cubic harmonic which may be written as

X140, $)=2 ng W Y 1n(6, $)

where the Y,,, are spherical harmonics. Equation
(A15) is also valid for the (COIPW(K;)) terms.
The CO-OPW elements are

<Co,.|H[¢(f<,.)>=<coi]H]Pw(ij))—Z,ajt(co,.[ch,> .
(A16)



The CO functions could be explicitly orthogonalized
to the C, as was done by Deegan and Twose. ’ Our
method of constructing the CO makes (CO;|H|C,)
automatically equal to zero for I(i)#1(¢), and actual
calculation indicated that these terms are negligi-
ble for xn(i) #n(t) even when (i) =1(¢). We have

(CO; |H|PW(K,)) = K2 (CO, |[PW(K,)) + 47X ,(K,) F;(K,)

(A17a)
with

Fi(K,)=fu,.('r)j,(i)(Kj'r)rV(V) ar . (A170)

Equation (A17a) is also used for those C, which do
not satisfy Eq. (A10) exactly. We also have

(€O, |6 (&) = (CO, | PW(K,)) - T, a;,(CO,|C,) . (A18)

As in Eq. (A16), we took the ¥, above to be zero.
The CO-CO elements are

(COo;|COy=M; [u,(r)u;(r)dr o, (A19)
with M;= [ X2 (6, $)d®, (A197)
B845=81t),11 01,00 (A19")
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(CO,|H|COY =M, [u,()H, usr)dr &;; , (A20)
with M; and A;; as defined above and

2
H, = d +l(l+1) + Vir

TR T () . (A21)

Once the § and H matrix elements have been
formed as indicated above, a unitary transforma-
tion which diagonalizes § is applied to Eq. (A3).
This diagonalization utilizes the Jacobi routine. "
Then Eq. (A3) becomes

H'S =E,S.Z, , (A22)
with B =y" y, & =U"E,, and§,=U'sU, 2
diagonal matrix. Equation (A22) can be written as

H' E'=E, & | (A23)

where H’’ is the Hermitian matrix S;!/2}’ §;*/2
and &= §,!/2¢} . The Jacobi routine is applied
again giving both the eigenvalues E, and the eigen-
functions ¢*/. The original &, are given by

g.= Us;'/2¢) (A24)
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